Nitrogen and phosphorus fertilization in crop production to help shaping sustainable futures

Oene Oenema Wageningen University & Research

14th Dhalia Greidinger International Symposium Agricultural practices - towards environmental sustainability Haifa, Israel, 27 & 28 February 2023

Background

Plants need 14 nutrient elements (in addition to C, H, O): N, P, K, Mg, Ca, S, Fe, Mn, Zn, Cu, B, Mo, Cl (Ni)

Animals and humans need 22 nutrient elements: N, P, K, Mg, Ca, S, Fe, Mn, Zn, Cu, Mo, Cl, Co, Na, Se, I, Cr, Ni, V, Sn, As, F

Uneven distribution on the globe:

- 1. Shortages lead to poor growth & development
- 2. Surpluses lead to pollution & ecosystem degradation
- 3. Easy accessible (P) reserves are being depleted

Classical questions in fertilization research

Nutrient input X

Yield gaps and different N response curves

Nutrient input

Large differences between crops in financial loss with sub-optimal N fertilization

Financial loss, euro per ha

N application, % of recommended amount						
Crop type	50%	60%	70%	80%	90%	
Potato, sand	415	305	205	125	55	
Potato, loess	695	500	335	250	90	
Starch potato	120	80	45	20	5	
Silage maize	105	75	50	25	10	
Spinach	1300	830	475	210	70	
Lilies	2070	1450	910	505	205	

Based on a statistical analyses of many field experiments in NL. Note, fertilizer N savings are not included. After Van Dijk et al. 2008

Soaring natural gas prices hit especailly EU producers of fertilizers & chemicals

- In October 2022 more than 70% of N fertilizer plants was off-line
- Increased fertiliser prices and increased imports of N fertilisers
- Increased incentives for producing green / bio-based ammonia

Food/feed exporting countries tend to have negative P balances, and low P input circularity

Wang et al., in prep.

Increasing need to considering nutrient use and cycling in food systems' perspective

Stockholm Resilience Centre, 2022

Law of the optimum

"The effect of N and/or P fertilization on crop yield & quality is largest when <u>all other</u> crop yield defining, limiting, or reducing factors are optimal".

The balance between nutrient supply and demand changes when nutrient loss limits need to be met too

Need for new policies, business models, tools & advice:

- To guide farmers to achieve the conditions of the 'law of the optimum'
- To decrease nutrient losses further, through emission mitigation measures
- To increase the recycling of nutrients from residues, manures, and wastes
- To implement demand-side changes in food ingredients

Review of 163 meta-analysis studies on crop husbandry

and management practices

	Number of meta-analysis studies per aspect					
Crop husbandry and soil management practices	Total	Crop yield & quality	Soil quality	/Resource / use efficiency	Economic aspects	Environ- mental impacts
1 Crop type & crop rotations	32	12	12	1 2 1	1	14
2 Nutrient management	25	12	9	\ 0 /	1	7
3 Irrigation + fertigation	18	12	2	11	0	4
4 Drainage	6	1	1	O T	1	4
5 Tillage	55	19	36	5	2	14
6 Pest management	7	3	3	0	0	1
7 Weed management	4	2	2	0	0	0
8 Crop residue & mulching	19	14	5	6	1	8
9 Mechanization & technology	2	3	1	0	1	0
10 Landscape management	6	3	2	0	0	4
Total	174	81	73	24	7	56

Rietra et al., 2020

Fertilizer N recovery efficiency and N fertilizer rate

Only small effects of split applications

15

-15

LateN/EarlyN Ratio (%)

Modest benefits of fertilizer placement relative to broadcasting

Large benefits of using fertilizer inhibitors

Sha et al., Meta-analysis of N stabilizers on fertilizer-N fate. AGEE, 290 (2020) 106763

Again, large benefits of using fertilizer inhibitors

Large benefits of optimizing irri/fertigation on NUE, WUE

Irrigation and fertigation

Rietra et al. Review of Crop Husbandry and Management Practices Using Meta-Analysis Studies: Land 2022, 11, 255

Surface mulching increases yield and resource use efficiency, but increases N₂O emissions too

Effect size (%)

Crop residue and mulching

Rietra et al. Review of Crop Husbandry and Management Practices Using Meta-Analysis Studies: Land 2022, 11, 255

Precision agriculture is driven by technology

Lu et al., AgriEngineering 2022, 4, 626–655.

Abbreviations: TA = total articles; TC = total citations; A

Assessment of 1064 Smart Farming Technologies (SFTs)

SFTs do not bring major changes in agricultural systems
 Commercial SFTs were indicated to increase productivity, revenue, and quality
 Main claims on input reduction (fertilizers, pesticides, and irrigation water
 Little attention for gaseous emissions

Balafoutis et al., Smart Farming Technology Trends. Agronomy 2020, 10, 743 Adoption of Precision Agriculture in US – survey & analysis of 1594 farms

- > Farm size matters; early adopters were large farms
- Farms with advanced PA technology were technically more efficient than non-adopters.
- Differences in technical efficiency were driven by inefficiencies in input usage at the farm level
- > Yield monitors were the most popular data collection tool (55%)
- VRT for seeding, fertiliser or pesticides used on 26% of farms

Plant biostimulants increase crop yields by ~17%;

meta-analysis of 1,108 paired observations from 181 empirical studies

Biostimulant category	Comparisons	Studies	3	Estimate [95% CI]			
Chi	88	13	∎	14.8 [11.3, 18.3]			
HFA	129	30	⊢	16.1 [12.7, 19.4]		lain climates Precinitation	Temperature
PHs	230	47	⊢■−∣	16.5 [14.3, 18.7]	Af Am As Aw A: BWA BWA BSA BSA Cfa Cfb Cfc Cm Cab Cac Crea Creb Cac C: Cfa Cfb Cfc Cm Cab Cac Crea Creb Cac	equatorial W: desert arid S: steppe warm temperate f: fully humid	h: hot arid F: polar frost k: cold arid T: polar tundra a: hot summer
Si	27	11	⊢ • − −	16.1 [9.2, 23.0]	Dfa Dfb Dfc Dfd Daa Dab Dac Dad Dwa Dab Dwc Dwd E: EF ET	: snow s: summer dry polar w: winter dry m: monsoonal	b: warm summer c: cool summer d: extremely continental
Phi	18	3	┝━━─┤	8.6 [4.6, 12.5]	and With 1	1 Ala	1 Martin
SWE	449	82	¦∎-	17.1 [15.6, 18.6]	ACCENT	6 Common	
PE	146	32	⊢	26.6 [23.1, 30.1]	A ANSA	S. Contractor	2 W
MLE	71	15	, , - -	— 30.8 [26.1, 35.6]			
Other PE	75	19	- -1	22.3 [17.2, 27.3]			N Con
Commercial st	atus				Vegetables Others Fruits		
Non-commerc	ial 515	93	⊢ −•−−	21.8 [20.1, 23.5]	Cereals Legumes		
SWE	277	54	-∙-	18.0 [15.7, 20.3]	Root/tuber crops		0 2000 4000
Commercial	571	94		14.4 [12.7, 16.0]			
SWE	172	29	⊢ ∎-	16.5 [14.6, 18.4]			
All biostimulan	t 1087	180	•	17.9 [16.7, 19.1]	Li et al., 202	22)	
		۲ ۵	10 20 30	40			
		0	Yield response (%)				

"Due to possible publication bias, we assume that the average yield increase reported here is an over-estimation of what can be expected in a commercial context" (Li et al., 2022)

European Green Deal: transforming the economy for a sustainable future

- Response to the UN SDGs
- Tackling climate and environmental-related challenges
- Main policy areas:
 - Climate-neutral by 2050
 - Clean energy, industry, mobility
 - Circular economy, resource efficient
 - Farm to fork, i.e., a food system approach
 - Preserving biodiversity
 - Zero pollution

New EU Fertilising Products Regulation, more type of products & more quality control

New EU Fertilizer Product Regulation – gives a boost to recycling

Product Function Categories Fertilizers (solid / liquid): 1. a. Organic b. Organo-Mineral c. Inorganic (Mineral) 2. Liming material 3. Soil improver **Growing media** 4. 5. Inhibitors 6. **Plant Biostimulants** Blends 7.

Farm-to-Fork strategy; 6 priorities

- Ensuring sustainable food production
- Ensuring food security

A healthy and plant based diet reduces the risk of life threatening diseases and the environmental impact of our food system.

- Stimulating sustainable food processing & practices
- Facilitating the shift to healthy, sustainable diets
- Reducing food loss and waste
- Combating food fraud along the food supply chain

Farm Sustainability Tool – FaST Navigator

- Part of a new CAP strategic plan
- an electronic tool for on-farm decision support:
 - For optimizing economic performance
 - For nutrient management planning and N, P, K balances
 - Quantitative advice for N, P, K fertilization
 - Mitigation of GHG emissions

Osann et al., 2022 Development of a common framework for the quantitative advice of crop nutrient requirements and greenhouse gas emissions and removal assessment at farm level -FaST-Navigator

KringloopWijzer – management / accounting tool in NL

- Developed as <u>management tool</u> for grassland-based dairy farms
- From 2016 implemented on all dairy farms as <u>monitoring / accounting tool</u> by the milk processing industry.
- Data are owned by farmers and industry
- Used for monitoring / accounting of:
 - Milk production and feed use (efficiency)
 - N and P balances and use efficiencies
 - Emissions of NH₃, CH₄, N₂O, CO₂ emissions
 - 'On the way to Planet Proof Milk'

Oenema & Oenema, 2021, 2022

Nitrogen Crisis in NL

The battle is about:

- Distribution of limited emissions rights
- Legitimicy of emission mitigation
- Buy-out of livestock farms
- Changes in the crop rotation
- Trust

Summary & Conclusions

- From fertilization of crops to nutrient use & recycling in food systems
- Law of the optimum is guiding:
 - all yield defining, limiting and reducing factors have to be addressed
- Meta-analysis useful method to synthesise published research findings
- Precision tools have to deliver greater impact on nutrient use efficiency
- More efforts needed to address situations with
 - too little nutrient inputs
 - too much nutrient inputs
- Need for new policies, business models, tools & advice

Thanks for your attention!!

Questions?

Plant biostimulants

Plant biostimulants are products that stimulate plant growth and improve one or more additional functions:

- nutrient use efficiency,
- abiotic stress tolerance,
- crop quality traits, and
- availability of confined nutrients in the soil or plant rhizosphere.

EU Fertilising Products Regulation 2019/1009 distinguishes two types:
> microbial (mycorrhizal fungi, and rhizobacteria)
> non-microbial (6 complex mixtures of extracts)

