Modeling nitrogen transport, uptake and transformation in the root zone with HYDRUS (2D/3D)

The 13th Dahlia Greidinger International Symposium 2019

Thomas Groenveld^{*a,b}, Yair Y. Kohn^a, Amir Argaman^c and Naftali Lazarovitch^b

^a Central and Northern Arava Research and Development, Arava Sapir, Israel *tomsadehyarok@gmail.com

^b French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel

^c Utrecht University, Utrecht, Netherlands

atmosphere

plant

soil

Mitscherlich Exponential (ME)

Quadratic Plateau (QM)

R-SWMS

To describe the flow of water and transport of nitrogen in the root zone

on the basis of measured time variable boundary conditions.

HYDRUS (2D/3D)

- Water flow in the unsaturated zone Richards' equation
- Solute transport- convection dispersion equation
- Transpiration reduction due to water stress- van Genuchten S-shape
- Chemical phase change first order decay reaction
- Active, passive and compensated nitrate uptake
- Root growth function
- Used frequently in modeling nitrogen flow and uptake

Modeling active uptake

Experimental Setup-Fishfarm

Experimental Setup-Greenhouse

חצבה

חצבה

Perlite hydraulic properties

Ks: 943 cm day-1, thetaS: 0.74, thetaR: 0.214, alfa: 0.0388, n: 2.405

Inverse calculation of dispersivity

dispL:7.8 , dispT: 0.01

Bonaid any portidition of the density distribution

$$R_p(t+1) = R_p(t) \left(\frac{T_a}{T_p}\right)$$
$$T_p(t+1) = T_p(t) \left(\frac{R_a}{R_p}\right)$$

 R_p : potential nitrogen uptake R_a : actual nitrogen uptake T_p : potential transpiration T_a : actual transpiration

Conclusions

Under lower N fertigation, transport to the root surface by diffusion increases, as does the gradient against which active N uptake must take place.

The effects of salinity are still apparent in reduced transpiration, even for plants that are under severe nitrogen stress.

It is possible to describe active uptake without precise measurement of root length or area in HYDRUS (2D/3D)

substrate concentration

Km

Questions?

