Can farming be precise and sustainable? And how can we be sure?

Veerle Van linden

13th Dahlia Greidinger International Symposium Haïfa, Israel 04-06/03/2019

Content

- Precision farming and sustainable farming practices
- How do we measure sustainability of farming practices?
- Life Cycle Analysis (LCA): what is it?
- LCA Difference with carbon footprint
- LCA Principle of environmental impact assessment
- LCA What impact categories are of interest?
- LCA Recommended methodologies
- LCA What data do we use?
- LCA Multiple outputs from a single production process
- LCA Against what do we weigh the impact?
- LCA In practice: where do we start?
 - Scope & definition
 - Data collection

ILVO

- Impact assessment
- Discussion & Interpretation
- Challenges for (precision) agriculture

Challenges to agricultural production are huge

 \rightarrow population & preferences vs climate

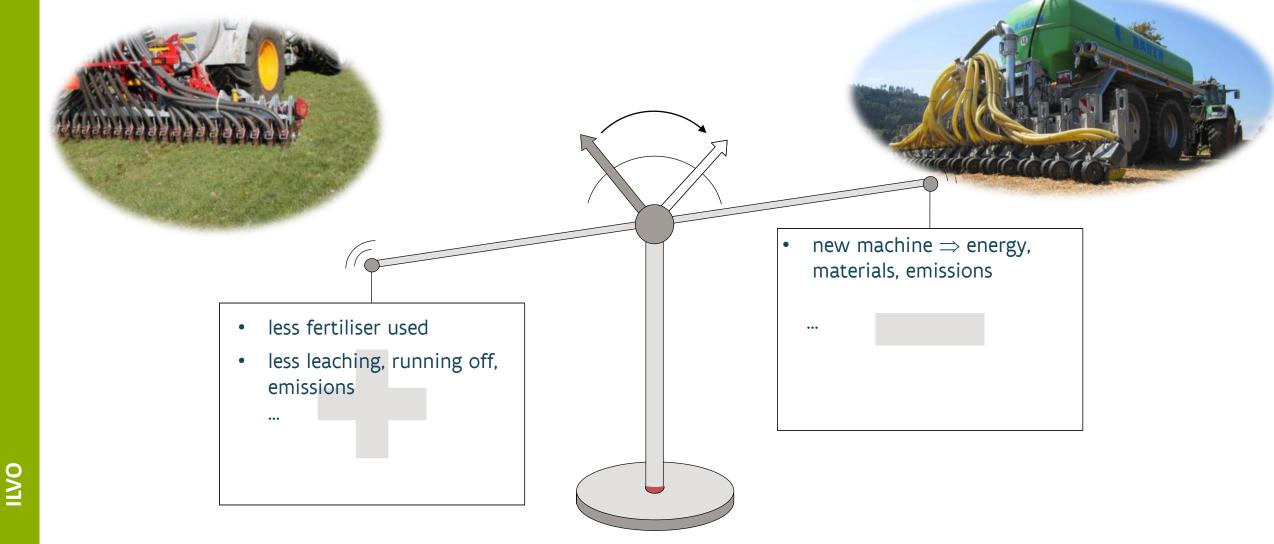
PF is a management approach making use of a set of technologies

- satellite positioning data
- remote sensing
- information technology
- proximal data gathering

to optimise return on inputs (yields) whilst

possibly reducing environmental impacts

"How sustainable is the use of drones for disease control by remote sensing?" (with/without plant treatment by robots)


- early detection (of stress)
- VR spraying: less plant protection product

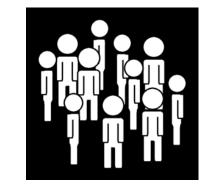
...

 (using robots) less field operations (fuel consumption and field compaction)

- manufacturing of drone (materials, energy)
- power to operate the drone
- power to process images (server use)...

"What is the advantage of variable rate fertilization?"

"What is the advantage of variable rate fertilization?"



1 kg synthetic N-fertiliser NOT applied = 5.53 kg CO_2 -eq emissions prevented* 5.53 CO_2 -eq = 1.75 CO_2 -eq from synthesis + 3.78 CO_2 -eq from application

If you know that 15% savings in N-application is possible by adjustment of sprayers... start counting!

Sustainability has more than one aspect

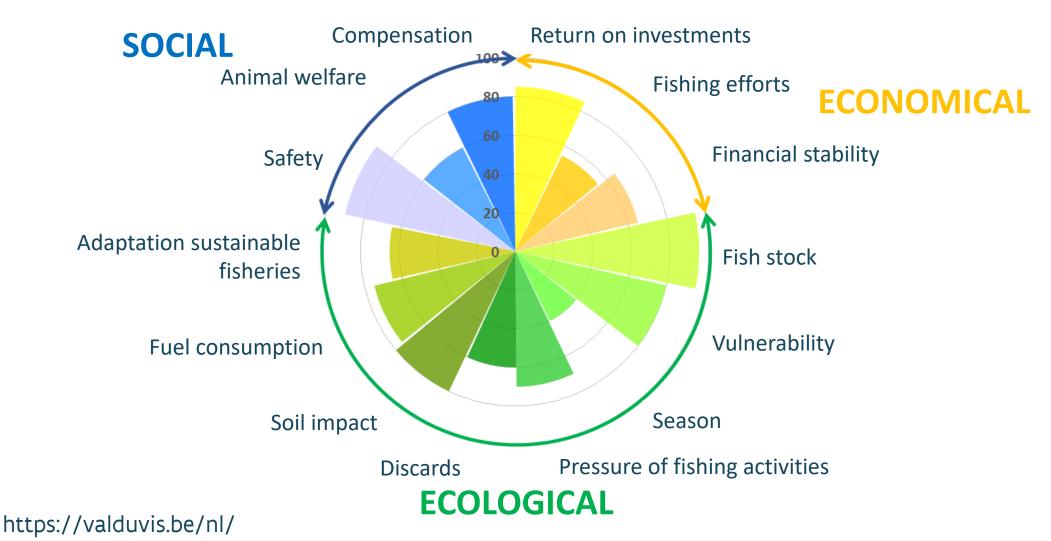
 \rightarrow We cannot combine all aspects in one number

 \rightarrow We cannot reduce sustainability to a single score

Focus is mainly on ecological sustainability

Existing initiatives (...) :

- Product environmental footprint (EC Europe)
- Marine & Aquaculture Stewardship Council (worldwide)


Existing instruments – primary production (...) :

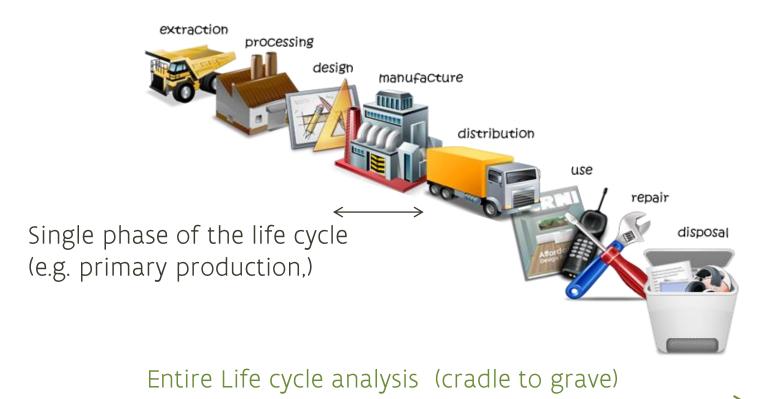
- <u>Valduvis</u> (BE, fish)
- <u>CAP'2ER</u> (FR, cattle)
- <u>Cool farm tool</u> (UK, internat., plant + animal)
- <u>CLM Meetlat Klimaat</u> (NL, dairy, arable farming)
- <u>COMET Farm tool</u> (USA, fruit and vegetables)
- •

...

e.g. How measure \ ex. integral sustainability

VALDUVIS – sustainability star

Existibng labels (...) :

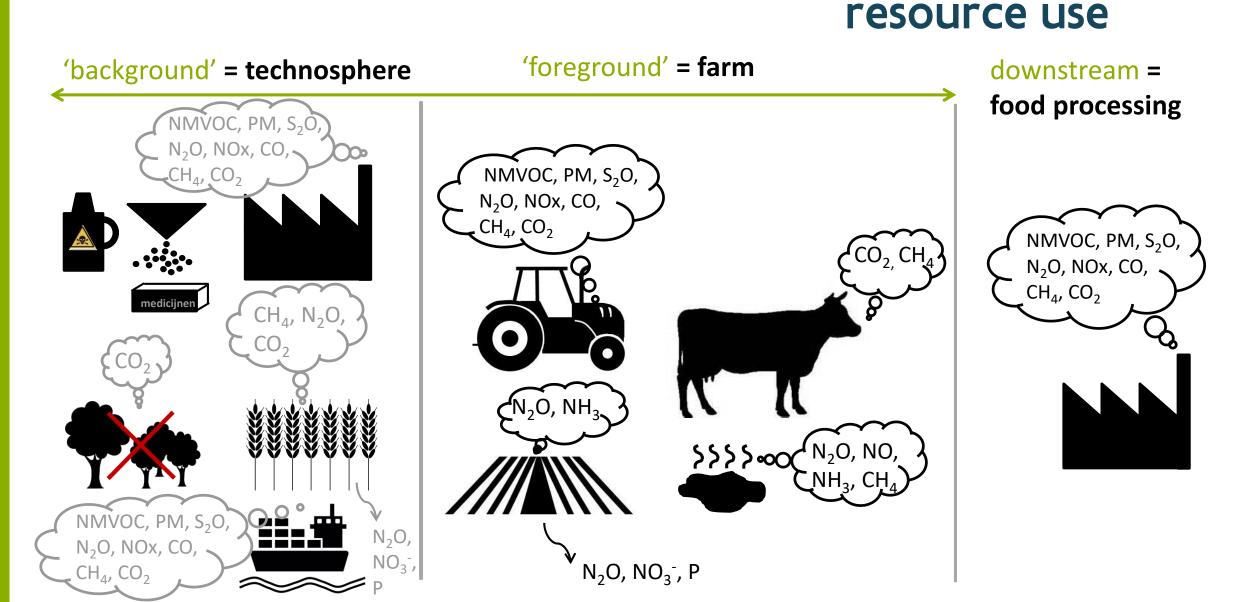

Standard methodology for measuring ecological sustainability:

Life Cycle Analysis or LCA

ISO 14040:2006 (Principles and framework) ISO 14044: 2006 (Requirements and guidelines) Life Cycle Analysis (LCA) –what is it?

LCA – what is it?

- analysis of the entire life cycle /chain of a product/process
- accumulated emissions and resource consumption are translated into damage to the environment


LCA – what is it?

- Determines the the sustainability of products, processes or services
- Is considering all stages of the life cycle
- All stages = manufacturing, use and disposal stages = holistic
- Indicates at what stages, in what processes the highest impacts occur
- → measuring and evaluation method for the environmental impact of a product

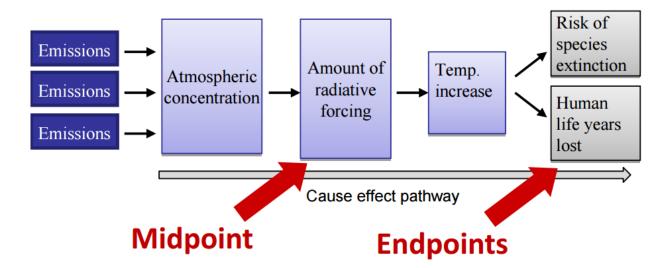
LCA in agriculture: direct + indirect emissions and

e.g.

ILVO

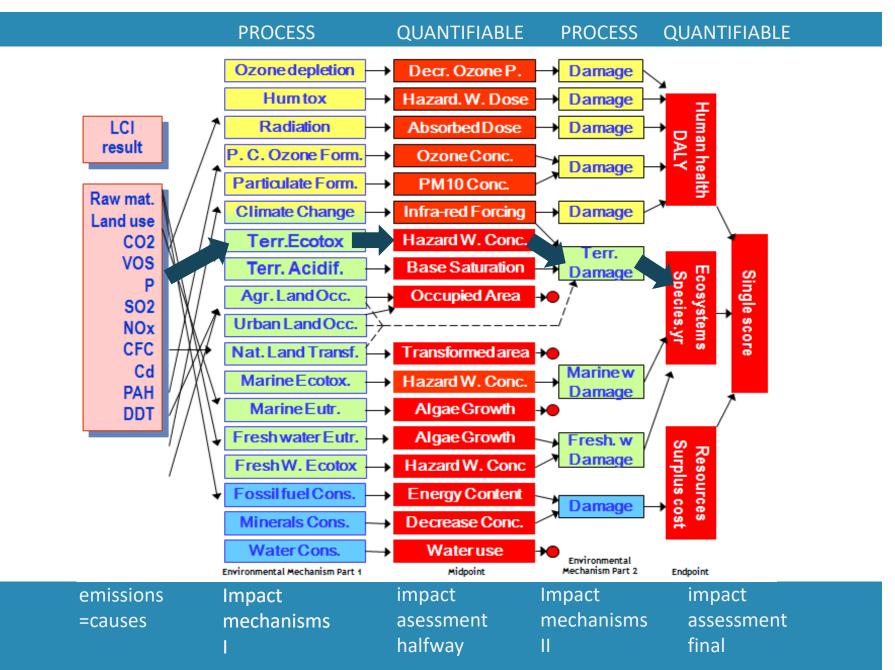
LCA – Difference with carbon footprint

LCA - Difference with carbon footprint (CFP)


- Life cycle analysis = methodology
- Assessment of impact(s) in certain impact categories
- Different impact categories are a.o. :
 - climate change
 - eutrophication (marine, fresh water, terrestrial)
 - acidification
 - PM formation
 - ozon depletion
 - human toxicity
 - land occupation (agricultural, urban)
 - fossil depletion
 - ...
- Impact category 'climate change' $\Rightarrow \Sigma CO_2$ -eq = CFP
- \Rightarrow The CFP is but 1 feautured impact category

LCA - Principle of environmental impact assessment

LCA – principle of environmental impact assessment

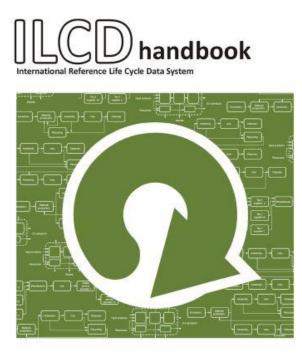

• Cause effect chain (here: GHG-emissions)

- Impact evaluation can be done at different time steps: halfway (Midpoint) or at the end (Endpoint)
- Based on a.o. risk models
- Further along the chain = more uncertainty

cause-effect chain

LCA - What impact categories are of interest?

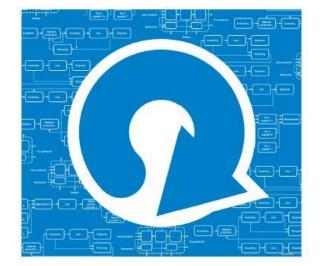
LCA - What impact categories are of interest?


- Standard = analyse all impact categories
- Categories of interest are those with the highest relative contribution
- Include at least impact categories that you wish to study (e.g. climate change)
 - climate change
 - eutrophication (marine, fresh water, terrestrial)
 - acidification
 - particulate matter (PM) formation
 - agricultural land occupation
 - fossil depletion
 - water use

LCA – Recommended methodologies

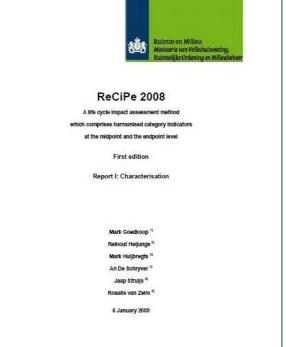
LCA – recommended methodologies

- ILCD = International reference Life Cycle Data system \rightarrow handbooks
- ReCiPe


EUROPEAN COMMISSIO

General guide for Life Cycle Assessment - Detailed guidance

Specific guide for Life Cycle Inventory data sets



First editio

LCA - What data do we use?

LCA - What data do we use?

- As representative as possible (geographical, time, process, ...)
- As quantitative and as qualitative as possible
 - Experiments, measurements on farm (own data/literature)
 - Legislation
 - Models

 - Accountancy Online: Feedprint (free)
 - Interviews
 - ...

LCA - What data do we use? \ databases

• Elementary flows = unity processes

Naam	/ Eenheid	Afvaltype	Project		
Sugar beet pulp {CH} beet sugar production Alloc Rec, S	kg	Compost	Ecoinvent 3 - allocation, recycled content - system		
Sugar beet pulp {CH} beet sugar production Alloc Rec, U	kg	Compost	Ecoinvent 3 - allocation, recycled content - unit		
Sugar beet pulp {CH} ethanol production from sugar beet Alloc Rec, S	kg	Compost	Ecoinvent 3 - allocation, recycled content - system		
Sugar beet pulp {CH} ethanol production from sugar beet Alloc Rec, U	kg	Compost	Ecoinvent 3 - allocation, recycled content - unit		
Sugar beet pulp {GLO} market for Alloc Def, S	kg		Ecoinvent 3 - allocation, default - system		
Sugar beet pulp {GLO} market for Alloc Def, U	kg		Ecoinvent 3 - allocation, default - unit		
Sugar beet pulp {GLO} market for Alloc Rec, S	kg		Ecoinvent 3 - allocation, recycled content - system		
Sugar beet pulp {GLO} market for Alloc Rec, U	kg		Ecoinvent 3 - allocation, recycled content - unit		
Sugar beet pulp {GLO} market for Conseq, S	kg		Ecoinvent 3 - consequential - system		
Sugar beet pulp {GLO} market for Conseq, U	kg		Ecoinvent 3 - consequential - unit		
Sugar beet pulp {GLO} to generic market for energy feed Alloc Def, S	kg		Ecoinvent 3 - allocation, default - system		
Sugar beet pulp {GLO} to generic market for energy feed Alloc Def, U	kg		Ecoinvent 3 - allocation, default - unit		
Sugar beet pulp {GLO} to generic market for energy feed Conseq, S	kg		Ecoinvent 3 - consequential - system		
Sugar beet pulp {GLO} to generic market for energy feed Conseq, U	kg		Ecoinvent 3 - consequential - unit		
Sugar beet pulp {RoW} beet sugar production Alloc Rec, S	kg	Compost	Ecoinvent 3 - allocation, recycled content - system		
Sugar beet pulp {RoW} beet sugar production Alloc Rec, U	kg	Compost	Ecoinvent 3 - allocation, recycled content - unit		
Sugar beet pulp {RoW} ethanol production from sugar beet Alloc Rec, S	kg	Compost	Ecoinvent 3 - allocation, recycled content - system		
Sugar beet pulp {RoW} ethanol production from sugar beet Alloc Rec, U	kg	Compost	Ecoinvent 3 - allocation, recycled content - unit		
Sugar beet pulp, dried, consumption mix, at feed compound plant/NL Economic	ton	Compost	Agri-footprint - economic allocation		
Sugar beet pulp, dried, consumption mix, at feed compound plant/NL Energy	ton	Compost	Agri-footprint - gross energy allocation		
Sugar beet pulp, dried, consumption mix, at feed compound plant/NL Mass	ton	Compost	Agri-footprint - mass allocation		
Sugar beet pulp, dried, from pulp drying, at plant/DE Economic	kg	Compost	Agri-footprint - economic allocation		
Sugar beet pulp, dried, from pulp drying, at plant/DE Energy	kg	Compost	Agri-footprint - gross energy allocation		
Sugar beet pulp, dried, from pulp drying, at plant/DE Mass	kg	Compost	Agri-footprint - mass allocation		
Sugar beet pulp, dried, from pulp drying, at Suiker Unie plants/NL Economic	ton	Compost	Agri-footprint - economic allocation		
Sugar beet pulp, dried, from pulp drying, at Suiker Unie plants/NL Energy	ton	Compost	Agri-footprint - gross energy allocation		
Sugar beet pulp, dried, from pulp drying, at Suiker Unie plants/NL Mass	ton	Compost	Agri-footprint - mass allocation		
Sugar beet pulp, pressed, from wet pulp pressing, at Suiker Unie plants/NL Economic	ton	Compost	Agri-footprint - economic allocation		
Sugar beet pulp, pressed, from wet pulp pressing, at Suiker Unie plants/NL Energy	ton	Compost	Agri-footprint - gross energy allocation		
Sugar beet pulp, pressed, from wet pulp pressing, at Suiker Unie plants/NL Mass	ton	Compost	Agri-footprint - mass allocation		
Sugar beet pulp, wet, consumption mix, at feed compound plant/NL Economic	ton	Compost	Agri-footprint - economic allocation		
Sugar beet pulp, wet, consumption mix, at feed compound plant/NL Energy	ton	Compost	Agri-footprint - gross energy allocation		
Sugar beet pulp, wet, consumption mix, at feed compound plant/NL Mass	ton	Compost	Agri-footprint - mass allocation		
Sugar beet pulp, wet, from sugar production, at plant/DE Economic	kg	Compost	Agri-footprint - economic allocation		
Sugar beet pulp, wet, from sugar production, at plant/DE Energy	kg	Compost	Agri-footprint - gross energy allocation		
Sugar beet pulp, wet, from sugar production, at plant/DE Mass	kg	Compost	Agri-footprint - mass allocation		
Sugar beet pulp, wet, from sugar production, at plant/FR Economic	ka	Compost	Agri-footprint - economic allocation		

e.g.

LCA - What data do we use? \e.g. sugar beet pulp

Naam	/ Eenheid Afvalty		e Project	
Sugar beet pulp, dried, consumption mix, at feed compound plan (NLEconomic	ton	Compost	Agri-footprint economic allocation	
Sugar beet pulp, dried, consumption mix, at feed compound plant/NL Energy	ton	Compost	Agri-footprint - gross energy allocation	
Sugar beet pulp, dried, consumption mix, at feed compound plant/NL Mass	ton	Compost	Agri-footprint - mass allocation	
Sugar beet pulp, dried, from pulp drying, at plant/DE Economic	kg	Compost	Agri-footprint - economic allocation	
Sugar beet pulp, dried, from pulp drying, at plant/DE Energy	kg	Compost	Agri-footprint - gross energy allocation	
Sugar beet pulp, dried, from pulp drying, at plant/DE Mass	kg	Compost	Agri-footprint - mass allocation	
Sugar beet pulp, dried, from pulp drying, at Suiker Unie plants/NL Economic	ton	Compost	Agri-footprint - economic allocation	
Sugar beet pulp, dried, from pulp drying, at Suiker Unie plants/NL Energy	ton	Compost	Agri-footprint - gross energy allocation	
Sugar beet pulp, dried, from pulp drying, at Suiker Unie plants/NLMass	ton	Compost	Agri-footprint - mass allocation	

- 1. Select the proper process
- 2. Type of flow? pressed/dried/wet
 - •••
- 3. Origin of the data?
- {RoW} = EU {GLO} = global {CH} = Switserland NL, FR, DE (the Netherlands, France, Germany, ...)

4. Database?

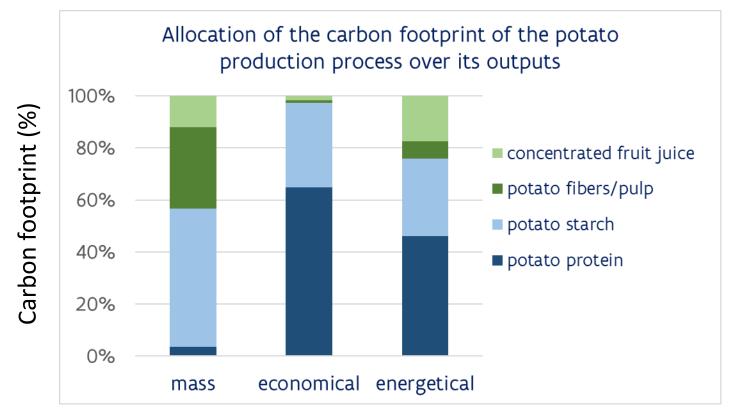
Ecoinvent 3.0 Agri-Footprint

•••

5. Select type of allocation

LCA – Multiple outputs from a single production process

LCA - Multiple outputs from a single production process


of the outputs

- Partition the impact over multiple outputs = Allocation
 - Outputs = useful output + by- and co-products
 - Based on an allocation key
- 3 generally used allocation methods
 - based on economic value
 - based on physical properties –e.g. mass
 - based on energetic value
 - \rightarrow economical, physical, energetic allocation
- Economical allocation is used most
- Physiological allocation is recommended when possible

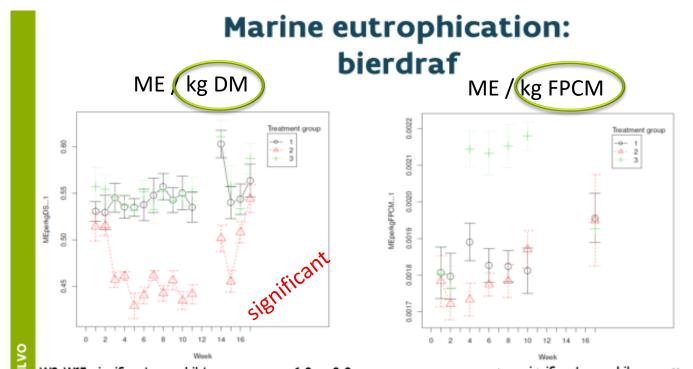
e.g. Allocation illustrated

Values from the table

Table 2.4.5 Data for allocation

By-product	Name CVB	Mass	DMC (g/kg)	Economic Fraction*	GE (MJ/kg)
Potato protein	Potato protein Ruw ASH <10 (34910) Potato protein Ruw ASH >10 (34920)	16	900	2	20,930
Potato starch	Potato starch dried (34700)	238	800	1	13,592
Potato fibers/ pulp	Potato pulp pressed (53600)	140	165	0.035	2,917
Protamylasse/ concentrated fruit juice	Potato juice concentrated (35000)	54	560	0.05	7,989

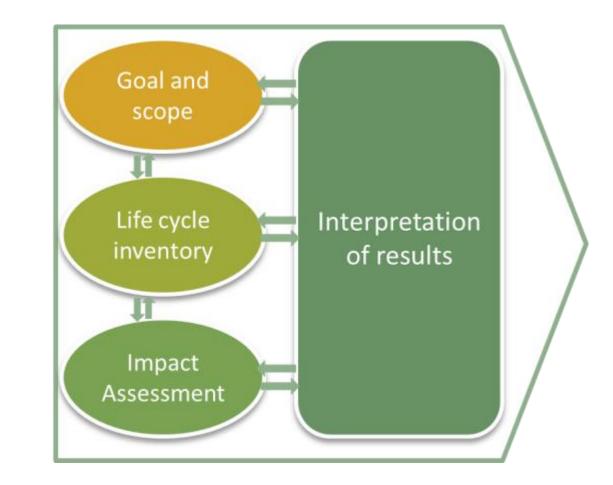
LCA – Against what do we weigh the impact?


LCA – Against what do we weigh the impact?

- Choice of functional unit (FU)
- Impacts are expressed per FU

ILVO

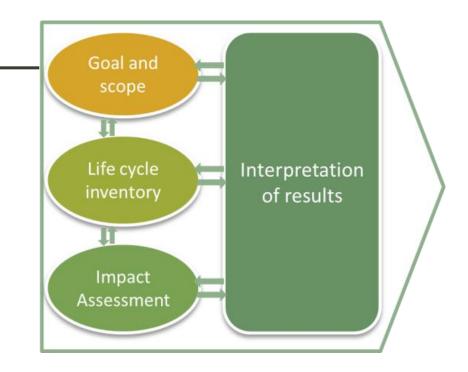
e.g.: kg⁻¹ DM, kg⁻¹ FPCM, kg⁻¹ carcas weight, ha⁻¹, ha⁻¹ y⁻¹...


• Choice of FU determines the result!

LCA – in practice: where do we start?

LCA - in practice: where do we start?

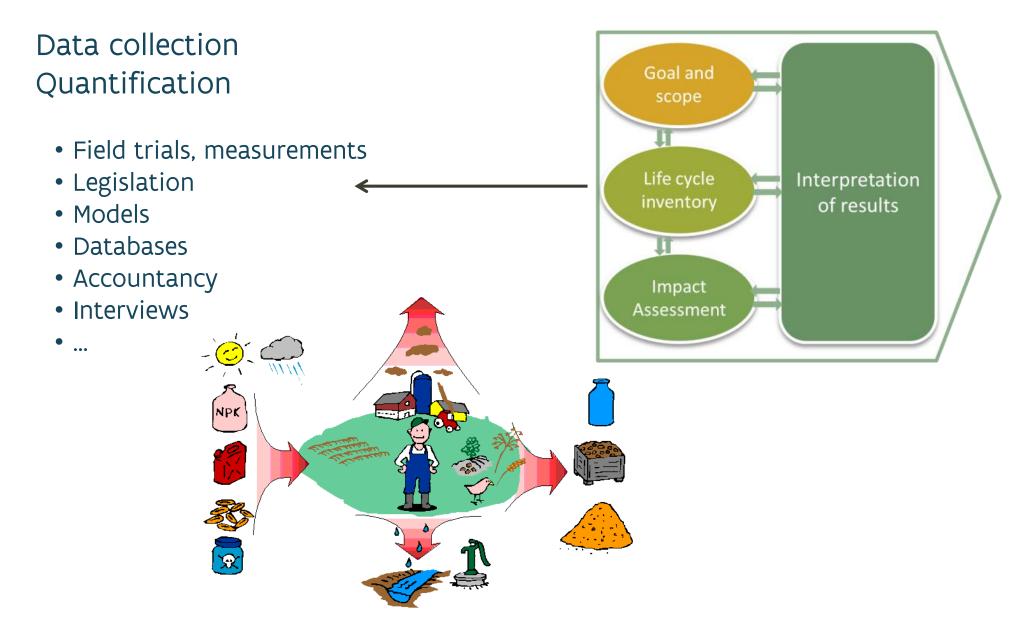
4 steps



\rightarrow iterative process

What? Why?

- \rightarrow Process description + function
- \rightarrow System boundaries
- \rightarrow Functional Unit
- \rightarrow Allocation procedures
- \rightarrow assessment methodology
- \rightarrow Assumptions & limitations
- \rightarrow System analysis

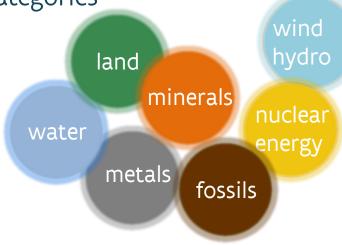


e.g. LCA – in practice \ step 1

Huysveld et al., 2015

ILVO

Potential environmental impact


- In terms of emissions
- In terms of resource use

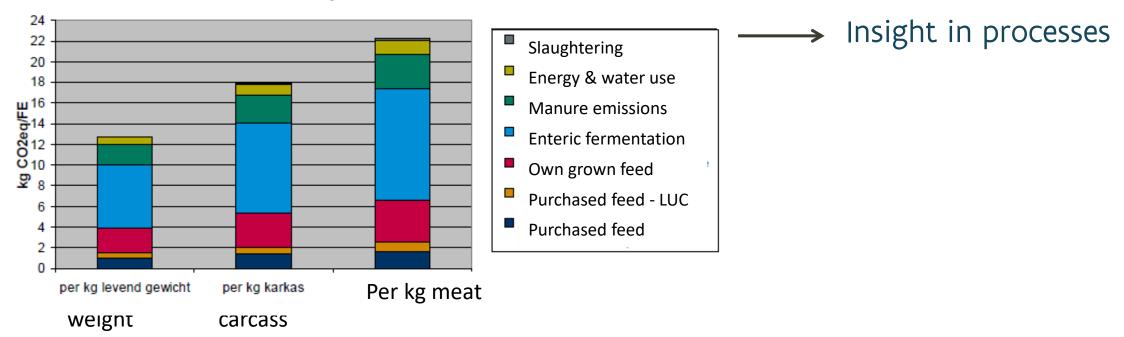

Emissions: ReCiPe method

- 18 midpoint categories
- 3 endpoint categories

Resources: **CEENE** method

• 7 CEENE categories

<u>Cumulative</u> <u>Exergy</u> <u>Extraction</u> from the <u>Natural</u> <u>Environment</u> (<u>CEENE</u>) indicator


(Dewulf et al., 2007)

e.g.

e.g. LCA – in practice \ step 3 \ illustration

Carbon Footprint of beef in Flanders

Figuur 23: Resultaat carbon footprint van rundvlees- uitgedrukt in verschillende functionele eenheden (FE)

Carbon footprint van rundvlees

ΙΓΛΟ

Source: Toepassen van de Carbon Footprint methodologie op Vlaamse veehouderijproducten, ERM en Ugent, 2011.

Fig. 2 Product comparison midpoint characterization factors	Climate change Human Health	LCA of meat replacers
(from cradle to plate)	Ozone depletion	
	Human toxicity	

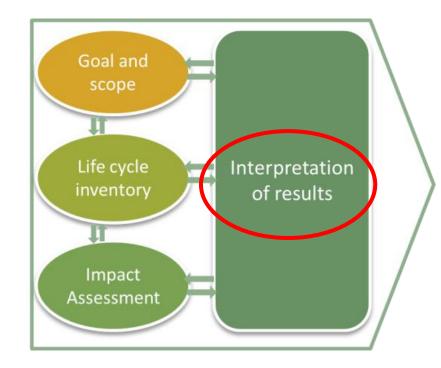
Human toxicity	Y	
Photochemical oxidant formation		
Particulate matter formation		
lonising radiation	Chicken	
Climate change Brosystems	Dairy-based	
	- Gluten-based	
Terrestrial acidification	Insect-based	
	En-etul-ta	
Freshwater eutrophication	Mycoprotein-based	
Terrestrial ecotoxicity	y Soymeal-based	
Freshwater ecotoxicity	y <u>////////////////////////////////////</u>	
Marine ecotoxicity	Diffe	erent impact
Agricultural land occupation	Cate	egories
Urban land occupation		•
Natural land transformation	n	
Metal depletion		
Fossil depletion		
	0 10 20 30 40 50 60 70 80 90 100	
Comparing products Method: ReCiPe Endpoint (H) World ReCiPe H/A / Character		

Bron: Smetana et al., 2015. Meat alternatives: life cycle assessment of most known meat substitutes. J. Life Cycle Ass.

e.g.

ILVO

Resource fingerprinting of milk production on farm, Flanders (CEENE method)


Processen		Grondstoffencategorieën						
	Total resources	Abiotic renewable resources	Fossil resources	Nuclear resources	Metal resources	Mineral resources	Water resources	Land resources
Feed production on-farm	44%	<1%	10%	1%	<1%	<1%	<1%	88%
- Land area	37%	0%	0%	0%	0%	0%	0%	100
- Fuel	1 2%	<1%	97%	1%	<1%	<1%	I 1%	/ <1%
- Seed	1%	1%	12%	2%	<1%	<1%	1%	84%
- Mineral fertilisers	2%	2%	88%	4%	<1%	<1%	2%	4%
- Plant protection products (PPP)	<1%	3%	70%	12%	<1%	<1%	12%	2%
- Ground water for spraying PPP	<1%	0%	0%	0%	0%	0%	10%	
- Infrastructure	3%	5%	49%	11%	1%	<1%	3%	31%
Feed purchased	49%	1%	10%	1 2%	<1%	<1%	1%	87%
Other inputs dairy production	7%	1%	28%	17%	<1%	<1%	13%	41%
- Land area	1%	0%	0%	0%	0%	0%	0%	100
- Energy (electricity and fuel)	3%	I 1%	52%	41%	<1%	<1%	4%	%
- Ground water	1%	0%	0%	0%	0%	0%	10%	
- Bedding material purchased	2%	<1%	4%	<1%	<1%	<1%	<1%	95%
- Chemicals	<1%	5%	54%	19%	<1%	<1%	15%	7%
- Infrastructure	1%	1 1%	44%	3%	<1%	1 1%	1 2%	49%
TotalCEENE(MJ/kgFPCmilk sold)	37.2	1%	12%	2%	<1%	<1%	1%	849

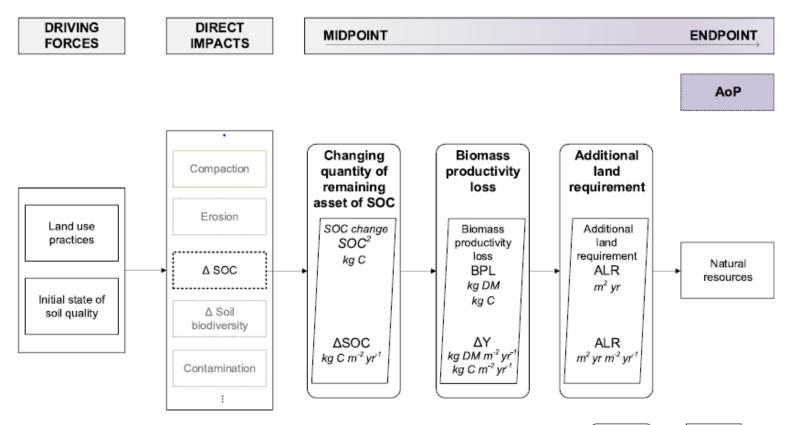
Huysveld et al., 2015

Interpretation

• ...

- Clearly mention the used method and sources
- Mention the validity of the results
- Compare with other research
- In case of 'odd' results: look back at the data

\rightarrow iterative process


Challenges for (precision) agriculture

LCA – challenges for (precision) agriculture

- Precision agriculture
 - Qualitative and reliable **data** on **emerging technologies** if you want to assess the sustainability during development
 - System boundaries: wide enough, yet not too wide in order to clearly see differences...
 - e.g. is 'gate to gate' sufficient or do you need 'cradle to gate'?
 - Data on primairy production and technology production should be of equal **quality**
 - Choice of the **FU**: land area harvested biomass ... ?

LCA – challenges for (precision) agriculture

- Including impact to the soil
 - \rightarrow developing indicators and cause effect chain

L. Boone et al. / Journal of Cleaner Production 203 (2018) 521-529

Impact category Impact indicator and CF

LCA – challenges for (precision) agriculture

• Including non-provisioning functions as valuable outputs

Source: see PhD Lieselot Boone, Chapter 6 (due May 2019)

• Targeting a fair comparison of conventional and nonconventional faming systems

ILVO

THANK YOU HAPPY TO ANSWER YOUR QUESTIONS

Veerle.Vanlinden@ilvo.vlaanderen.be

Flanders Research Institute for Agriculture, Fisheries and Food Burg. Van Gansberghelaan 115 box 1 9820 Merelbeke – Belgium T + 32 (0)9 272 28 00 F +32 (0)9 272 28 01

> t&v@ilvo.vlaanderen.be www.ilvo.vlaanderen.be

> > **ILVO**

