Precision Irrigation –

Research & Development directions

Ofer Beeri, Tal Shilo, Shay May-tal, Ran Pelta and Alon Horesh Ofer.beeri@manna-irrigation.com Manna-Irrigation, Gvat, Israel

Manna-Irrigation vision:

To deliver daily, sensor-free, affordable irrigation recommendation, globally

- Established in 03-16
- Employees: 15
- Subsidiary in India

Product

- Web System: Q1-18
- Mobile Apps: Q2-18
- 6 languages, ~40 crops, multi irrigation systems

<u>Market</u>

- Territories: 9
- Growers: Hundreds
- Ha: Tens thousands

Agenda

- Overview: requirements for R&D from global and grower perspectives
- Main R&D:
 - integration of different remotely information systems
 - Deliver updated crop irrigation coefficient
 - Deliver water-stress and dynamic-variable-rate-irrigation maps
 - Predict near-future weather to enhance irrigation applications
- Future directions

Overview – Requirements

Global perspective

 enhance global food production while reducing water consumption and improve water-use-efficiency (WUE)

The grower point-of-view

- Increase yield or decrease irrigation amounts
- Importance of water-stress and irrigation stress strategies
- (at least) weekly decision
- Small plots and sub-plot detection
- Reduce cost and maintenance (sensor-free)

Overview – Manna-Irrigation Model

Overview – R&D Directions

Global perspective

 enhance global food production while reducing water consumption and improve water-use-efficiency (WUE)

The grower point-of-view

- Increase yield or decrease irrigation amounts
- Importance of water-stress and irrigation stress strategies
- (at least) weekly decision
- Small plots and sub-plot detection
- Reduce cost and maintenance (sensor-free)

Main directions of R&D

- 1. To develop global coverage, high frequency, all-weather satellite monitoring, for small plots as 0.5 ha.
- 2. To deliver updated crop coefficient (Kc) for reliable irrigation recommendation.
- 3. To map and assess water stress in order to present to the grower and to distribute efficient stressed irrigation recommendation.
- 4. To account for local environmental adjustments with climate factors and machine learning algorithms.

1. Global coverage, weekly, all-weather satellite monitoring

Main attributes:

> Map crop coefficient (Kc) and crop water demand (ETc) with spectral indices, for <1.0 Ha plot/sub-plot

- Utilize spectral indices from different sensors (Sentinel-2, Landsat-7 and Landsat-8)
- > Permit inclusion of local imagery as drones or aircrafts
- Remove cloud interference by integration of SAR dataset

Assessment of satellite imagery Kc with flux-tower Kc:

- Three crops
- ✓ Four flux tower sites
- ✓ Five satellite sensors
- ✓ 10 growing seasons
 - **105** images

Bi₂

Tw3

Ne1 – Corn Ne2 – Soybean

Results for the entire dataset (3 crops, 10 growing seasons, 105 images)

Metrics	Kc1 NDVI	Kc2 EVI2	Kc3 SAVI	Kc4 NDVI	Kc5 VARI	Kc6 EVI2
Bias	-0.001	0.093	0.054	0.085	0.095	0.083
RMSE	0.088	0.165	0.127	0.116	0.127	0.129
nRMSE	9%	17%	13%	12%	13%	13%
R ²	0.905	0.824	0.902	0.908	0.904	0.849
R ²	0.905	0.824	0.902	0.908	0.904	0.849

Results for each satellite sensor

	Landsat-5	Landsat-7	Landsat-8	Sentinel-2	LISS-3
	21 images	27 images	23 images	26 images	8 images
1 0.8 0.6 0.4 0.2 0 0	0.2 0.4 0.6 0.8 1 Kc tower	1 0.8 0.6 0.4 0 0 0.2 0.4 0.6 0.8 1 Kc tower	1 0.8 0.6 0.4 0 0 0.2 0.4 0.6 0.8 1 Kc tower	1 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 Kc tower	1 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 Kc tower
Bias	-0.028	-0.005	0.042	-0.007	-0.020
RMSE	0.090	0.092	0.088	0.089	0.057
nRMSE	11%	11%	11%	10%	8%
R ²	0.95	0.88	0.90	0.90	0.95

Results for each crop

The fusion of different satellite sensors to depict the dramatic change in short growing cycle of Alfalfa (2017)

3. Crop water stress & dynamic-variable-rate-irrigation maps

- 1. Crop water demand (ETc) adjustment with crop water stress (Ks): $ET_c = K_s \times (K_c \times ET_0)$
- 2. Ks and Kc require different methods of mapping
- 3. As Kc, Ks requires weekly monitoring to ensure correct application

Site 3 LWP reveal increase water stress greater than plan

3. Dynamic-Variable-Rate-Irrigation (DVRI) maps

Wetness maps from Sentinel-2 imagery reveal the spatial distribution of the crop stress, in addition to the temporal resolution

Next step is to include these maps, with geo-statistics to represent the entire field into one value, in the daily irrigation recommendation

5-July-2018

Legend • 3 Dn

25-July-2018

4. Local environmental adjustments with machine learning

Utilize crop modeling to account for local growing-degree-days (GDD),

and vapor-pressure-deficit (VPD) for crop-water-stress

Utilize ML to upscale from weather station (10-25 km distance) to hyper-local grid (1-3 km)

Utilize ML to predict GDD and water stress with forecast Temperature, Rain, ETO and VPDx

Summary

Our vision:

To deliver daily, affordable irrigation recommendation, globally, sensor-free

Future R&D directions

- ✓ To ensure global coverage, while utilizing independent sensors
- ✓ To overcome cloud interference by SAR or daily <30m multi-spectral imagery
- ✓ To deliver the accurate Kc or Ks, regardless of sensor type
- ✓ To detect water stress temporally and spatially and allow variable rate irrigation based on sub-plot detection
- To utilize machine learning methods to predict (next week) growth and stress and to upscale weather information into local field

Thank You!

You can find us at: Research Gate e-mail: <u>ofer.beeri@manna-irrigation.com</u> Phone : 054-2848303

