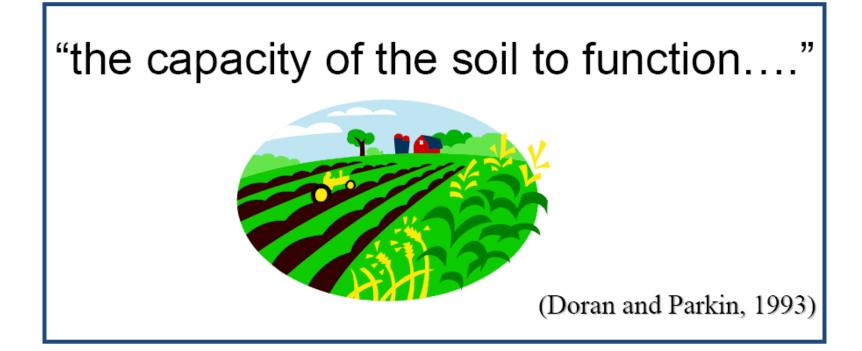
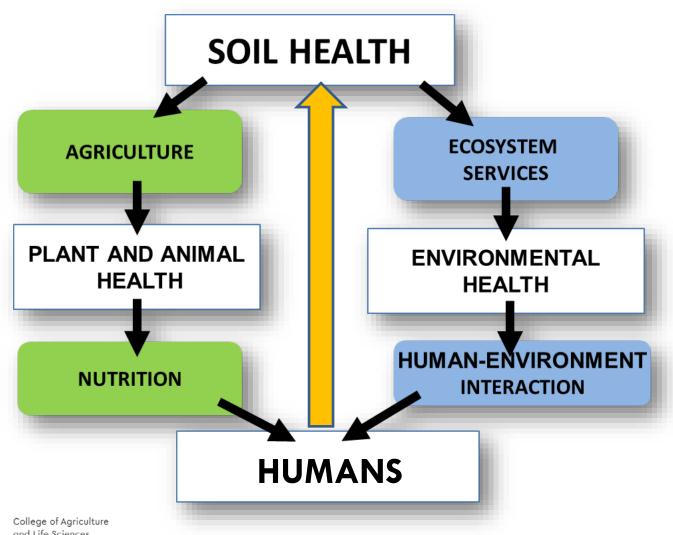


Soil Health:


Linking Comprehensive Soil Assessment With Agronomic Management Decisions

<u>Harold van Es</u>

Cornell**CALS**


College of Agriculture and Life Sciences <u>Contributions from:</u> Joseph Amsili Kirsten Kurtz Robert Schindelbeck

Soil Health is...

Importance of Soil Health

Cornell**CALS**

and Life Sciences

Soil and Food: The Basic Ingredients

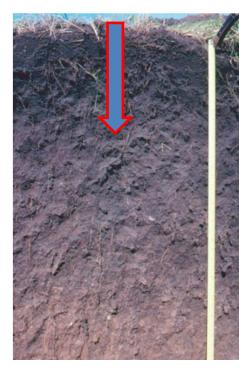
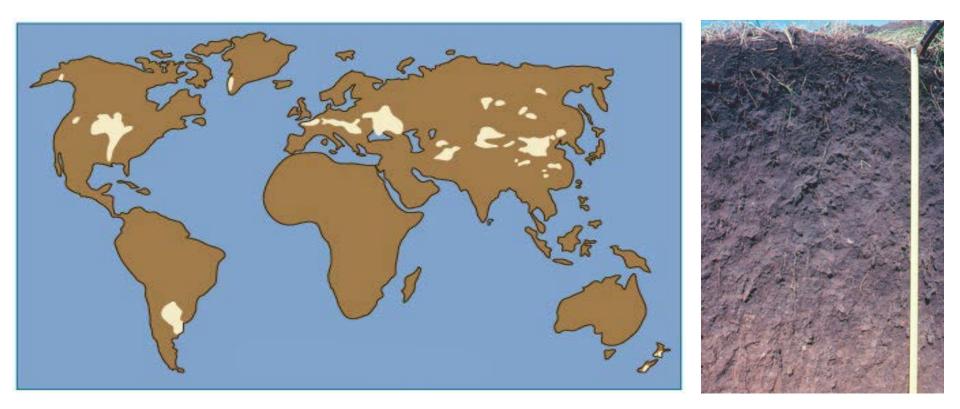


Photo: USDA-ARS

Photo: USDA-FS

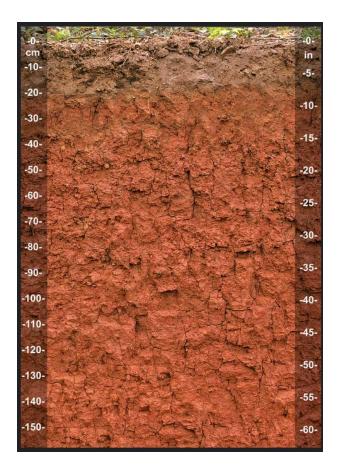
Soil = f(minerals, water, air, organisms, sun) soils build over time (net gains)

College of Agriculture and Life Sciences


Stock of Total (non-crystalline) Phosphorus 5 soils in Indiana (Sommers and Nelson, 1972)

Soil	Organic C	Total P
	%	ppm
Chalmers SiL	1.89	561
Davidson SiCl	4.09	810
Plainfield LS	0.86	422
Romney SiCL	3.51	820
Russel SiL	1.19	519
Average	2.31	626

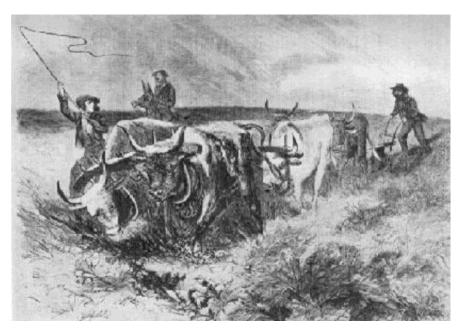
Approximately 3000 kg P/ha in 0-30 cm ~80-100 years of maize production


Highly successful soil health formation:

Peri-glacial loess under grassland vegetation store high amounts of nutrients and carbon

Marginally successful soil health formation:

Low-Fertility Soils store low amounts of nutrients and carbon



Cecil soil. Source: NRCS

Agricultural Development

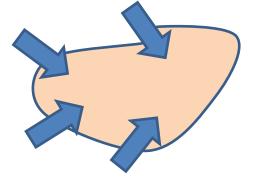
- Tillage stimulates OM decomposition, nutrient release
- Structural breakdown and exposed soil promote erosion
- Degradation faster in low fertility forest-derived soils in warmer climates

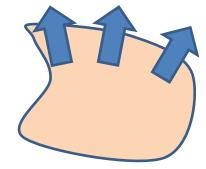
Agricultural Soils

- Less efficient in resource use than natural soils (minerals, water, sun) and lower biomass production than natural system
- Nutrients and energy (C)
 - Mostly removed through harvest (60-80%)
 - Partially recycled (residues or manure)
- <u>Result:</u>
- Nutrient and energy (carbon) depletion (<u>net loss</u>)

Agricultural vs. Prairie Soil (Western US Corn Belt) Organic Matter

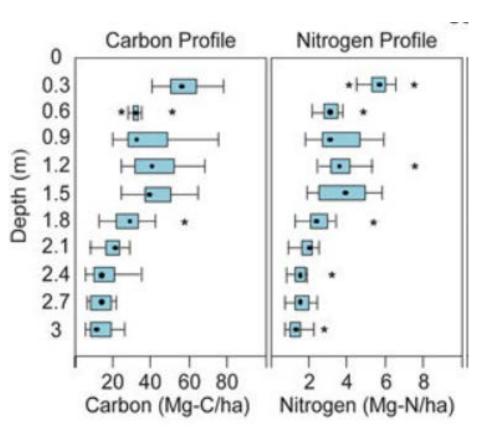
(Kurtz et al., in prep)


Spatial Dimension of Soil Health


Soil health is a result of in-situ soil building processes, but there are often spatial interconnections:

- Areas of <u>convergence</u> (gaining resources from other areas)
- Areas of <u>divergence</u> (losing resources to other areas)

through.....


- Natural processes (e.g., erosion-sedimentation, leaching)
- Anthropogenic processes (transfer of organics to other locations)

(hydro) biogeochemical convergence areas

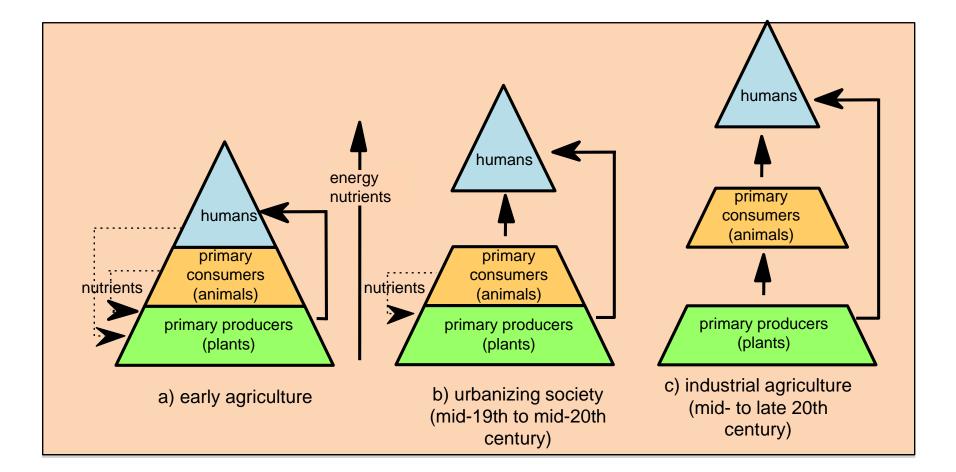
- Areas in catchments where water, nutrients and energy (mostly as organic matter) converge, emanating from hydro-biogeochemical <u>loss</u> areas.
- Mostly aggrading areas in floodplains and deltas, or smaller concave landscape positions.

D'Elia et al., 2017

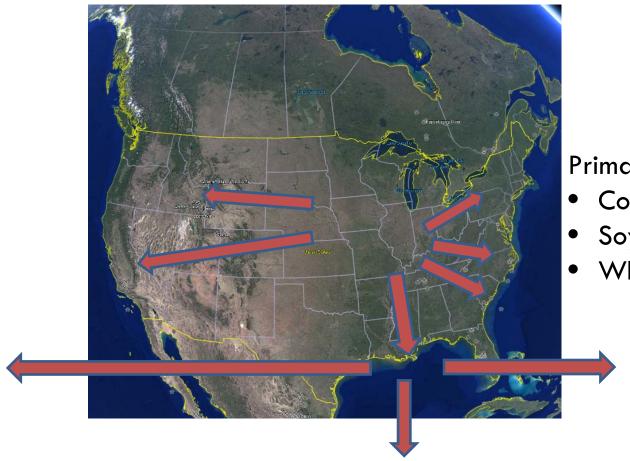
Natural Nutrient + Carbon Convergence Area: Lower Nile Valley

Other Nutrient + Carbon Convergence Zones:

Mesopotamia, Indo-Gangetic Plain, North China Plain,


Most Agricultural Lands Are in Areas of Nutrient and Carbon Divergence + Losses

- Erosion and leaching
- Removal of harvested crop



Anthropogenic Divergence-Convergence

Patterns of nutrient flows change over time

Transfer of Nutrients and Carbon National-Global Scale

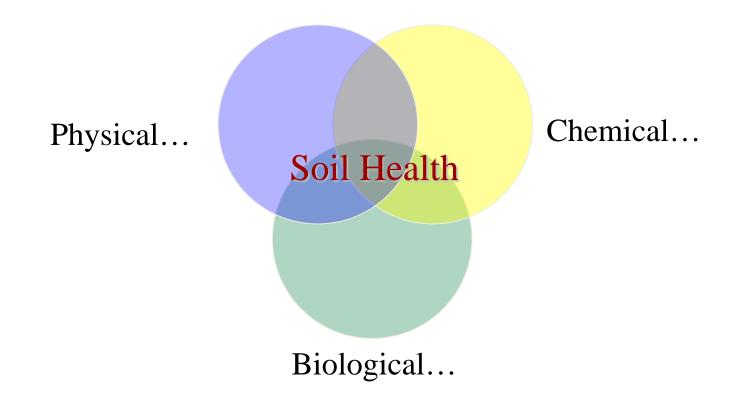
Primary transfers:

- Corn
- Soybean
- Wheat

Geochemical Reallocation Fertilizer

- Mineral deficits are supplemented with fertilizers from concentrated deposits
- Nitrogen reallocated from fossil fuel resources
- No carbon return (no bio!)

Global Agricultural Flows Grain and Oilseed



Soil Health Assessment

"What's Measured Gets Done"

Conceptual View of Soil Health

- <u>Functions</u> are supported by <u>processes</u>.....
- <u>Processes</u> are affected by <u>state variables</u>.....
- <u>Indicators</u> can represent relevant <u>state variables</u>

Comprehensive Assessment of Soil Health

- Available since 2006
- Builds on Soil Management Assessment Framework (Andrews et al., 2004)
- Measures 16 indicators
- Identifies soil constraints
- Guides management decisions

Comprehensive Assessment of Soil Health

Soil Health Laboratory, Department of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853. http://soilhealth.cals.cornell.edu

Grower: Bob Schindelbeck 306 Tower Rd. Ithaca, NY 14853	Sample ID: Field ID:	LL4 AUR E Zone Till -WITH Cover Crop
	Date Sampled:	05/14/2015
Agricultural Service Provider:	Given Soil Type:	Lima silt loam
Mr. Bob Consulting rrs3@cornell.edu	Crops Grown:	COG/COG/COG

Measured Soil Textural Class: loam

Sand: 38% - Silt: 44% - Clay: 18%

roup Indicator	Value	Rating	Constraint
hysical Available Water (Capacity 0.22	82	
hysical Surface Hardness	s 248	16	Rooting, Wat
hysical Subsurface Hardr	ness 360	29	
hysical Aggregate Stabili	ity 39.7	49	
ological Organic Matter	3.1	54	
ological ACE Soil Protein I	Index 4.6	21	
ological Soil Respiration	0.6	52	
ological Active Carbon	619	73	
bemical Soil pH	7.0	100	
hemical Extractable Phos	phorus 9.6	100	
bemical Extractable Potas	ssium 91.2	100	
Minor Elements Mg: 376.0 / Fe: 0.5 / M	Mn: 9.2 / Zn: 0.5	100	

Overall Quality Score:

65 / Excellent

Selection of CASH Indicators

- Relevance to important soil processes
- Consistency and reproducibility
- Ease of sampling
- Low cost

CASH Indicators

Chemical

Standard soil test plus options:

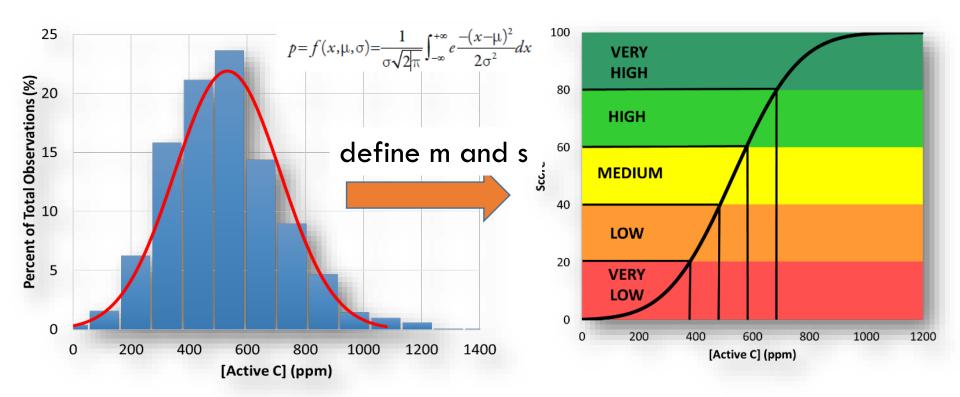
- Extractable P, K, and micronutrients: Plant nutrient availability
- **pH**: Influences chemical and biological reactions and availability of nutrients
- Soluble Salts: Salt problems
- Heavy Metals : Contamination and toxicity

CASH Indicators

Physical

- Aggregate Stability by simulated rainfall: Resistance to dispersal. Influences water infiltration/runoff, erosion, aeration, germination, rooting
- Available Water Capacity: plant available water storage capacity, drought resistance
- Penetration resistance (2 depths): soil compaction, rooting, germination, drought resistance

CASH Indicators


Biological

- Organic Matter: Energy and nutrient storage, C sequestration
- Active C (POXC): easily available carbon, microbial food source
- Soil Proteins: N containing life building blocks, N release
- **Respiration:** Microbial abundance and activity
- Root Disease Bioassay: soil-borne disease pressure

Soil Health Assessment Report 10 pages

rower:			S	ample ID:	LL4
06 Tow	indelbeck /er Rd. NY 14853		F	ield ID:	AUR E Zone Till -WITH Cover Crop
			[ate Sampled:	05/14/2015
	ural Service Provider:		C	Given Soil Type:	Lima silt loam
	Consulting rnell.edu		0	Crops Grown:	COG/COG/COG
Group	38% - Silt: 44% - Cla Indicator	Value	Ratin	g Constraints	S
physical	Available Water Capacity	0.22	82		
physical	Surface Hardness	248	16	Rooting, W	ater Transmission
physical	Subsurface Hardness	360	29		
physical	Aggregate Stability	39.7	49		
	Organic Matter	3.1	54		
biological	-				
biological biological	ACE Soil Protein Index	4.6	21		
	ACE Soil Protein Index Soil Respiration	4.6 0.6	21 52		
biological					
biological biological	Soil Respiration	0.6	52		
biological biological biological	Soil Respiration Active Carbon	0.6 619	52 73		
biological biological biological chemical	Soil Respiration Active Carbon Soil pH	0.6 619 7.0	52 73 100		

Generalized Scoring Function Normative Evaluation Using Fuzzy Logic: Cumulative Normal Distribution Function

After Andrews et al., 2002

Soil Health Management Planning

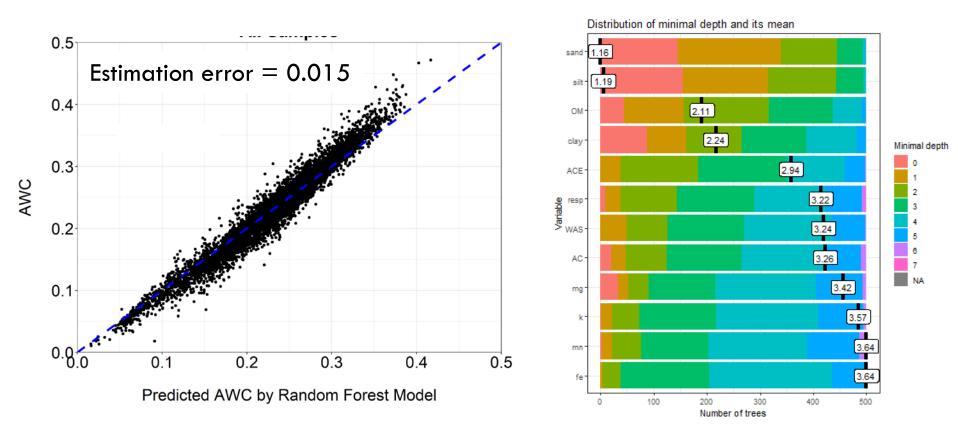
ower:			Sar	mple ID:	LL4
6 Tow	indelbeck ver Rd. NY 14853		Fiel	Id ID:	AUR E Zone Till -WITH Cover Crop
			Dat	te Sampled:	05/14/2015
	ural Service Provider:		Giv	en Soil Type:	Lima silt loam
	Consulting prnell.edu		Cro	ps Grown:	COG/COG/COG
vsical	Available Water Capacity	0.22	82	constraint	•
nd:	38% - Silt: 44% - C	lay: 18	%		
roup	Indicator	Value	Rating	Constraint	5
		V-8.6	02		
ysical	Surface Hardness	248	16	Rooting, W	ater Transmission
	Surface Hardness Subsurface Hardness	248 360	16 29	Rooting, W	ater Transmission
ysical				Rooting, W	later Transmission
iysical Iysical	Subsurface Hardness	360	29	Rooting, W	later Transmission
ysical ysical logical	Subsurface Hardness Aggregate Stability	360 39.7	29 49	Rooting, W	ater Transmission
ysical ysical logical logical	Subsurface Hardness Aggregate Stability Organic Matter	360 39.7 3.1	29 49 54	Rooting, W	fater Transmission
hysical hysical hysical ological ological ological	Subsurface Hardness Aggregate Stability Organic Matter ACE Soil Protein Index	360 39.7 3.1 4.6	29 49 54 21	Rooting, W	ater Transmission
ysical ysical logical logical logical	Subsurface Hardness Aggregate Stability Organic Matter ACE Soil Protein Index Soil Respiration	360 39.7 3.1 4.6 0.6	29 49 54 21 52	Rooting, W	later Transmission
vsical vsical ogical ogical ogical ogical	Subsurface Hardness Aggregate Stability Organic Matter ACE Soil Protein Index Soil Respiration Active Carbon	360 39.7 3.1 4.6 0.6 619	29 49 54 21 52 73	Rooting, W	later Transmission
rsical ogical ogical ogical ogical mical	Subsurface Hardness Aggregate Stability Organic Matter ACE Soil Protein Index Soil Respiration Active Carbon Soil pH	360 39.7 3.1 4.6 0.6 619 7.0	29 49 54 21 52 73 100	Rooting, W	later Transmission

Constraint	Short Term Management Suggestions	Long Term Management Suggestions
A	 Add stable organic materials, mulch 	Reduce tillage
Availabe Water	 Add compost or biochar 	 Rotate with sod crops
Capacity Low	 Incorporate high biomass cover crop 	 Incorporate high biomass cover crop
	 Perform some mechanical soil loosening 	 Shallow-rooted cover/rotation crops
Surface	(strip till, aerators, broadfork, spader)	 Avoid traffic on wet soils, monitor
Hardness High	 Use shallow-rooted cover crops 	 Avoid excessive traffic/tillage/loads
_	 Use a living mulch or interseed cover crop 	 Use controlled traffic patterns/lanes
C 1 C	Use targeted deep tillage	 Avoid plows/disks that create pans
Subsurface	(subsoiler, yeomans plow, chisel plow, spader.)	 Avoid heavy loads
Hardness High	 Plant deep rooted cover crops/radish 	 Reduce traffic when subsoil is wet
	Incorporate fresh organic materials	Reduce tillage
Aggregate	 Use shallow-rooted cover/rotation crops 	Use a surface mulch
Stability Low	Add manure, green manure, mulch	 Rotate with sod crops and mycorrhizal hosts
	Add stable organic materials, mulch	Reduce tillage/mechanical cultivation
Organic Matter	 Add compost and biochar 	 Rotate with sod crop
Low	 Incorporate high biomass cover crop 	 Incorporate high biomass cover crop
	Add N-rich organic matter	Reduce tillage
Soil Protein	(low C:N source like manure, high N well-finished compost)	 Rotate with forage legume sod crop
Soli Protein Index Low	 Incorporate young, green, cover crop biomass 	 Cover crop and add fresh manure
Index Low	 Plant legumes and grass-legume mixtures 	 Keep pH at 6.2-6.5 (helps N fixation)
	 Inoculate legume seed with Rhizobia & check for nodulation 	 Monitor C:N ratio of inputs
	 Use disease-suppressive cover crops 	 Use disease-suppressive cover crops
Root Pathogen	 Plant on ridges/raised beds 	 Increase diversity of crop rotation
Pressure High	Monitor irrigation	 Sterilize seed and equipment
	Biofumigate	 Improve drainage/monitor irrigation
	 Maintain plant cover throughout season 	 Reduce tillage/mechanical cultivation
Respiration	 Add fresh organic materials 	 Increase rotational diversity
Low	 Add manure, green manure 	 Maintain plant cover throughout season
	 Consider reducing biocide usage 	 Cover crop with symbiotic host plants
Active Carbon	 Add fresh organic materials 	 Reduce tillage/mechanical cultivation
Low	 Use shallow-rooted cover/rotation crops 	 Rotate with sod crop
LUII	 Add manure, green manure, mulch 	 Cover crop whenever possible

Constrained and Suboptimal indicators are flagged in report management table

Enhancing Soil Health Testing

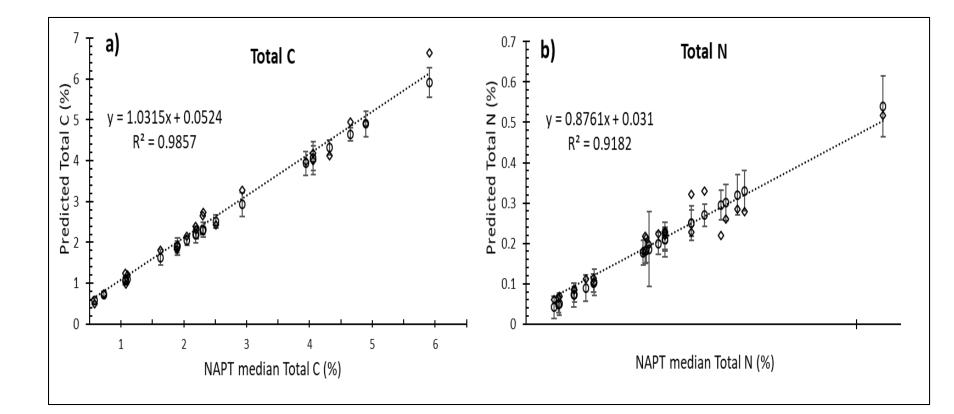
Best Subsets Analysis


Which indicator subsets are most predictive of overall SH? n=8074

Subset size	SH Indicators	R ² _{adj}
1	ActC	0.60
2	ActC + OM	0.68
3	ActC + OM + Resp	0.73
4	ActC + Resp + WAS + AWC	0.73

Amsili et al. (in prep.)

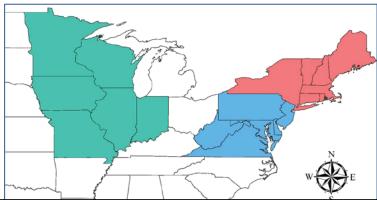
Simplifying Measurements


Predicting Available Water Capacity Using Random Forest Approach

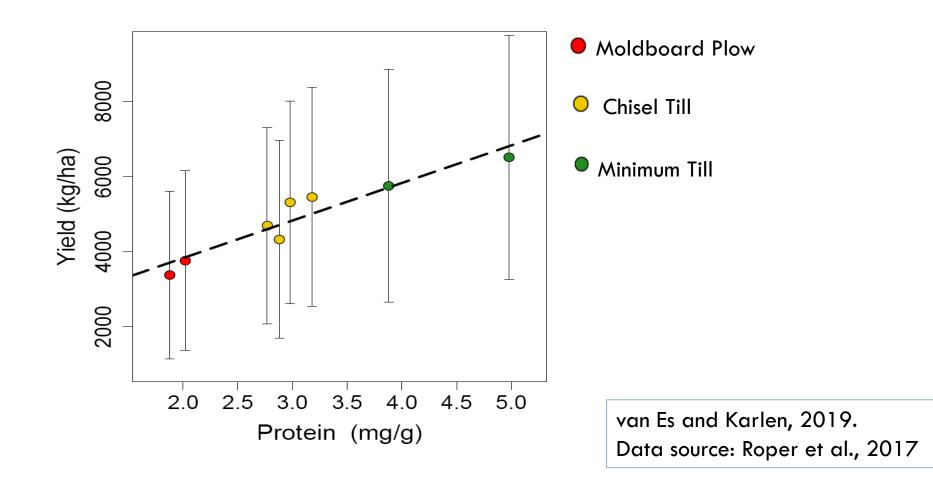
Amsili et al. (in prep.)

Simplifying Measurements

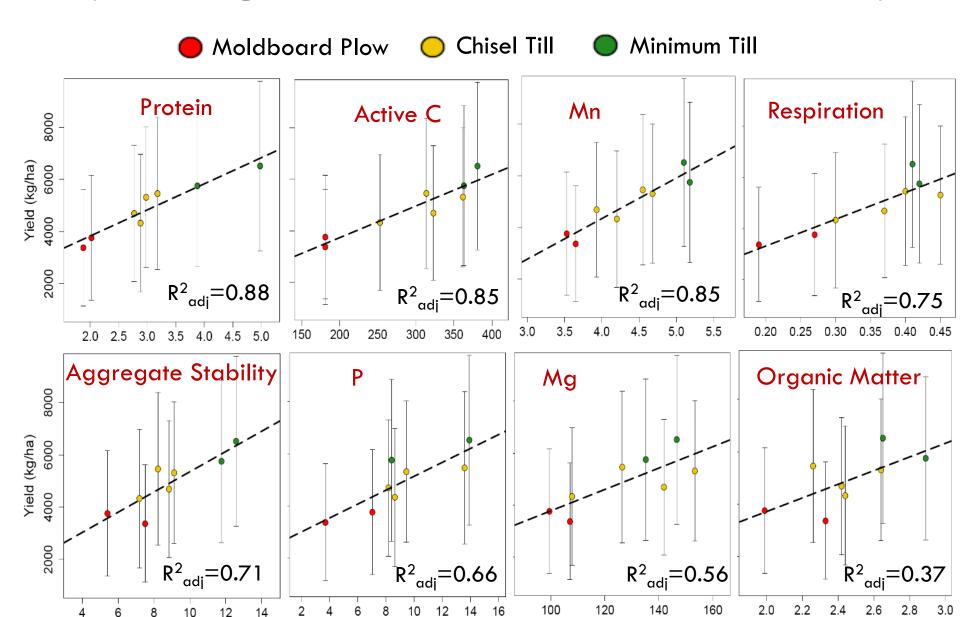
Mid-Infrared Reflectance Spectroscopy (Sherpa, 2019)



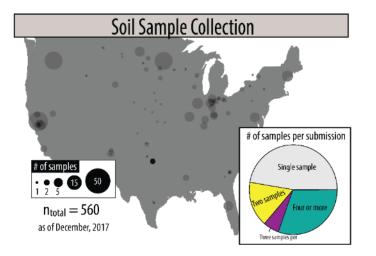
Soil Health Research Results using CASH Approach

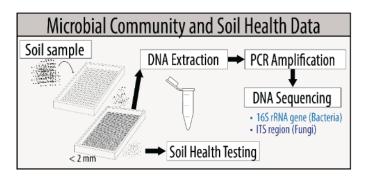

Regional Soil Health Differences

Fine et al., 2017 (data for medium-textured soils)

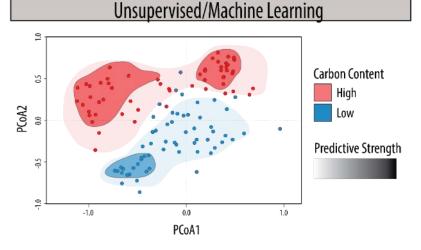


			~ ~ ~	
	Northeast	Mid-Atlantic	Midwest	
Ag Stability (%)	48.8 a	42.7 b	25.2 c	
Avail Water Cap (g/g)	0.19 c	0.22 b	0.23 a	
PenResist-15 (kPa)	1050 a	1346 b	1264 b	
PenResist-45 (kPa)	2037	2005	2053	
OrgMatter (%)	3.99 a	4.12 a	3.04 b	
ActC (mg/kg)	549 a	564 a	475 c	
Protein (mg/g)	8.8 b	10.0 a	4.9 c	
Respiration (mg CO2/g)	0.70 b	0.86 a	0.47 c	


Long-Term Tillage Studies – North Carolina Maize Yield is related to Soil Health (soil protein)

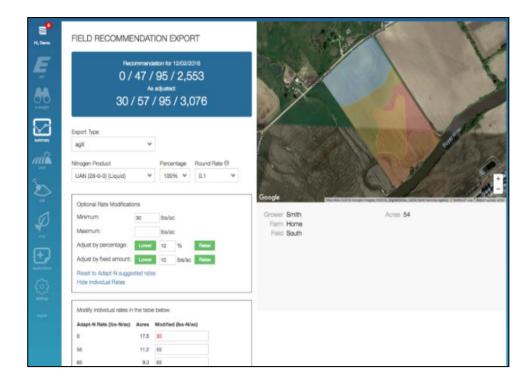


Soil Health Indicators and Yields – Corn (ranked; significant at α=0.05; van Es and Karlen, 2019)



Microbial Community Analysis: Next Step?

	Directed Community Analyses					
Taxonomi	c Identification	and Trait Dete	rmination	Phylogeny		
<u>Species</u>	<u>Classification</u>	Abundance	<u>Traits</u>			
Organism1	Rhizobium	412	N-fixation			
Organism2	Verrucomicrobia	138	Cellulolytic			
Organism3	Caulobacter	25	Low pH			
Organism4	Xanthomonas	50	Pathogen 🐯			

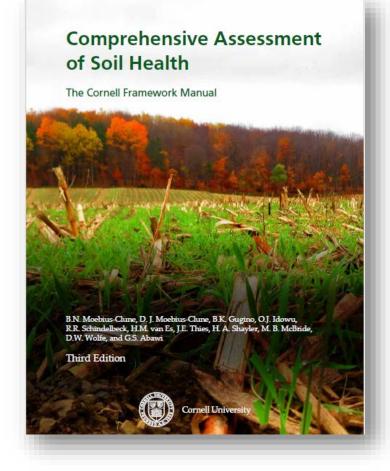

Slide by Roland Wilhelm

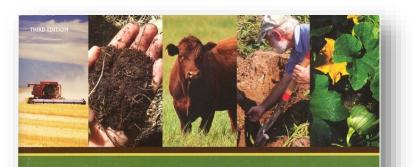
Using Soil Health Information to Manage Nitrogen

Adapt-N Integrates Soil Health into N Recommendations

- Soil organic matter
- Rotation effects
- Cover crop effects
- Rooting depth
- Enhanced efficiency products

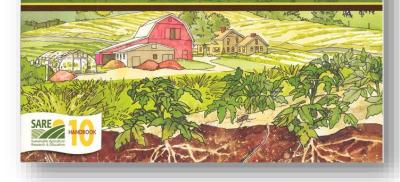
Summary


Soil Health


- Natural processes build soil health
- Management and economic forces degrade soil health

Soil Health Assessment

- Process and function focused
- Scoring functions to interpret values
- New insights from experiments
- Biological indicators are important


BOOKS FREE - ONLINE!

BUILDING SOILS FOR BETTER CROPS SUSTAINABLE SOIL MANAGEMENT

BY FRED MAGDOFF AND HAROLD VAN ES

Available at http://soilhealth.cals.cornell.edu